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ABSTRACT 

Performance of uncoded adaptive modulation (UAM) 
and adaptive coded modulation (ACM) enabled by the 
long-range prediction (LRP) that utilizes data-aided noise 
reduction (DANR) is investigated for rapidly varying 
mobile radio channels. Due to improved prediction 
accuracy and low pilot rate, the DANR-aided LRP 
outperforms previously proposed prediction methods that 
rely on oversampled pilots to achieve noise reduction 
(NR). While ACM is more sensitive to prediction errors 
than UAM, utilization of DANR substantially increases its 
spectral efficiency (SE) relative to previously proposed 
methods. The set of SNR values and prediction ranges 
where positive coding gain is achieved by ACM enabled by 
DANR-aided LRP is determined. It is also demonstrated 
that adaptive modulation (AM) aided by LRP has better 
performance for the realistic physical model than for the 
Jakes model in the practical SNR range.1 

I. INTRODUCTION 

Adaptive modulation (AM) has been proposed to 
improve the spectral efficiency (SE) for fading channels 
[1]. The uncoded adaptive modulation (UAM) schemes 
that employ multilevel quadrature amplitude modulation 
(MQAM) were investigated in [1, 2]. To improve SE, the 
adaptive coded modulation (ACM), also known as 
adaptive trellis-coded modulation (TCM), was proposed 
[3,4,5,6,7]. When reliable channel state information (CSI) 
is available, the ACM achieves significant coding gain 
over the UAM [3]. On the other hand, it has been shown 
that this coding gain diminishes when the CSI becomes 
unreliable [6, 7]. When the CSI is very inaccurate, UAM 
outperforms ACM.  

To maintain the CSI accuracy and, therefore, SE of 
adaptive transmission methods in rapidly varying mobile 
radio channels, fading prediction is required [ 8 ]. We 
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employ the long-range prediction (LRP) method, which 
was shown to achieve superior performance for realistic 
channel models and measured channels [8, 9,10,11]. For 
practical signal-to-noise ratio (SNR) values, noise 
reduction (NR) is required for the LRP. Methods that rely 
on oversampled pilots were proposed to achieve NR 
[11, 12 ]. However, the SE of these high-rate pilot 
techniques methods is significantly degraded due to 
resources consumed by transmitting pilot symbols [13].  

To improve the prediction accuracy while maintaining 
the SE, a novel data-aided noise reduction (DANR) 
method was proposed in [13] for UAM. In this method, 
MQAM symbols are coherently detected using low-rate 
pilot symbols as well as predicted future channel 
coefficients. These decisions are employed to obtain 
improved channel estimates. Due to high data rate of these 
decisions, NR is achieved without utilizing oversampled 
pilots. Then the improved channel estimates are passed 
through a robust filter that suppresses out-of-band noise, 
and decimated to obtain low-rate channel estimates used 
for LRP. It was demonstrated in [13] that the DANR 
technique outperforms existing pilot-based methods in 
terms of both prediction accuracy and SE for UAM 
systems.  

In this paper, we investigate the application of DANR to 
ACM systems. To obtain timely improved channel 
estimates for LRP, the decoded MQAM symbols are 
employed. The effect of reduced traceback depth for 
recently observed symbols on the prediction accuracy is 
investigated. The SE gain of DANR relative to pilot-aided 
NR methods is quantified for ACM. Moreover, we find the 
set of channel conditions where the ACM achieves coding 
gain relative to the UAM when DANR is employed. Thus, 
the values of SNR and prediction ranges where coding is 
beneficial are determined. The standard Jakes model and 
our realistic physical model are employed in testing the 
proposed methods.  

The remainder of this paper is organized as following. 
UAM and ACM enabled by LRP are discussed in section 
II. The proposed DANR method for ACM is described in 
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section III. Finally, numerical results and conclusions are 
presented in sections IV and V, respectively.  

II. ADAPTIVE MODULATION AIDED BY 
LONG-RANGE PREDICTION 

Consider the system diagram illustrated in Fig. 1 [13]. 
The equivalent lowpass received lth sample is 
 y(l)=x(l)h(l)+w(l), (1) 
where x(l), h(l), and w(l) are the transmitted symbol, the 
complex flat Rayleigh fading channel coefficient with 
E[|h(l)|2]=1, and complex white Gaussian noise with 
variance N0, respectively. The transmitted symbols can be 
either pilots or data symbols. Without loss of generality, 
we assume that x(l)= Ep  when pilots are transmitted. 

Frequently used notation of this paper is summarized in 
Table I. 

To enable AM, the fading coefficient is predicted using 
a linear predictor (LP) [8]. The actual fading coefficient 
h(l) and its prediction ĥ(l)  are jointly Gaussian random 
variables with the cross-correlation [7, 13] 

 ρ
Δ= E[h(l)ĥ*(l)]/σĥ (2) 

where σ2
ĥ=E[|ĥ(l)|2] . In this paper, the normalized 

prediction MSE defined as NPMSEΔ=1−ρ2 is employed as 
an appropriate indicator of SE in AM aided by fading 
prediction [13]. Without loss of generality, we omit the 
time index l, and denote γ=|h|2 and γ̂=|ĥ|2 in this section.  

Consider a coded or uncoded AM system with constant 
power allocation [2, 13, 14], MQAM constellation sizes 
Mi∈{4, 16, 64, 256}, i∈[1,…,4], and switching thresholds 
γi, i∈[0,…,5], where γ0=0 and γ5=∞. Fig. 2 illustrates our 
ACM scheme that employs a simple rate 1/2 convolutional 
encoder with four states [3]. It was shown in [3] that this 
ACM scheme achieves approximately 3dB power gain 
relative to the UAM when the CSI is perfect. If Mi-QAM 
is selected (i >0), two coded bits and log2Mi−2 uncoded 
bits are mapped to an Mi-QAM symbol.  

Given fixed average SNR=Es/N0, where Es is the average 
overall symbol energy that includes energy of both data 
and pilot symbols, the calculation of average MQAM data 
symbol energy Ed depends on the pilot transmission 
scheme. We employ pilot-based LRP methods where the 
pilot energy Ep is equal to the average symbol energy, i.e., 

Ep=Es. Thus, Es=Ed⌡⌠
γ1

∞

p(γ̂)dγ̂=Ed exp[ ]−γ1/σ
2
ĥ  [2, 13], where 

p(x) is the probability density function of a random 
variable x. When the SE loss caused by transmitting pilots 
is not taken into account, the SE is evaluated as  

( ; )h k L

ˆ( ; )ph k K L+

( ; )h k L0 ( ; )h k L

ˆ( )x l( )x l

 
Fig. 1. System diagram. 
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Fig. 2. Adaptive coded modulation (ACM) scheme 

employed in this paper. 
Table I. Notation 

fdm Maximum Doppler frequency 

fs Symbol rate 

fp Sampling rate of predictor 

h(l) Channel coefficient of the lth symbol 

h(k;L) Channel coefficient of the kth frame 

L Frame size 

K Superframe size 

J Decimation factor after robust filtering 

Ppred Order of prediction filter 

Ep Pilot symbol energy 

Es Average energy of all symbols 

λ Carrier wavelength 
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 Sd=∑
i=1

4
 
⎣
⎢
⎡

⎦
⎥
⎤

log2(Mi−1)⌡⌠
γi

γi+1

p(γ̂)dγ̂ . (3) 

We employ the UAM method described in [2, 11], and 
the ACM scheme based on the design in [6]. Given the 
reliability of prediction ρ (2), these methods select 
thresholds to maximize the SE while maintaining the 
average BER below the target BER Pt [2, 6]. Fig. 3 shows 
the SE of these systems Sd [2,6] for the target BER Pt=10−4 
and several average SNR levels when the SE degradation 
due to pilots is not taken into account. For the NPMSE on 
the order of 10−2 or smaller, prediction is sufficiently 
reliable to maintain near-optimal bit rate, and the SEs of 
both UAM and ACM are not sensitive to the variation of 
the NPMSE. On the other hand, these SEs decrease rapidly 
as the NPMSE approaches 10−1, and the rate of decrease is 
greater for ACM than for UAM. This observation confirms 
the conclusion in [6,7] that ACM is more sensitive to the 
prediction errors than UAM. For the NPMSE≈10−2, ACM 
has about 0.4 bps/Hz coding gain over the UAM, while 
UAM outperforms ACM when the NPMSE approaches 
10−1, which is often the case for realistic SNR values in 
practical mobile radio scenario [8, 9]. Therefore, to 
achieve positive coding gain in practical systems, the 
NPMSE should be decreased by employing NR.  

 Sensitivity of ACM to prediction errors was investigated 
in [6], and can be explained intuitively as follows. When 
prediction is unreliable, the BER of Mi-QAM for the 
AWGN channel at low SNR dominates the calculation of 
thresholds [2, 6] and results in reduced SE. Since TCM has 
higher BER than uncoded MQAM given the same 
bits/symbol in the AWGN channel with low SNR [1], 
UAM outperforms ACM as the prediction accuracy 
decreases.  

While the comparison in Fig. 3 is limited to a simple 
four-state encoder, it can be generalized for more complex 
encoders as follows. Increasing the number of states 
improves the coding gain for medium to high SNR, but 
degrades the BER at low SNR for  the AWGN channel [3]. 
Therefore, the sensitivity of ACM to prediction errors 
increases as the number of states grows. This conclusion 
was confirmed by simulations that compared four-state 
and eight-state encoders in [7]. Thus, the benefit of NR is 
expected to increase with the number of states in the 
encoder.  

III. DATA-AIDED NOISE REDUCTION FOR AM 
AIDED BY LRP 

The frame structure of LRP aided by DANR was 
described in [13, Fig. 3]. The transmitted symbols are 

grouped into frames with L symbols where fs/L=100fdm, 
and the constellation size is fixed in each frame [13]. Since 
channel coefficient is approximately constant in frame k, it 
is denoted h(k;L)≈h(kL−l), l∈[0,…,L−1]. K consecutive 
frames are grouped into a superframe, and one superframe 
pilot is transmitted at the end of each superframe [13]. 
Moreover, one pilot symbol is transmitted at the end of 
each frame that experiences outage. This method is 
referred to as adaptive pilot transmission.  

Let η denote the fraction of bandwidth dedicated to 
superframe pilots. The actual average SE of the system is 
−S=(1−η)Sd bps/Hz, where Sd is given in (3). As discussed 
in [13], methods that rely on oversampled pilots to 
accomplish NR incur severe penalty in SE. In these 
systems the pilot rate is on the order of 100fdm, or η=1/K 

[11], i.e., the frame rate in DANR, while the pilot rate 
η=1/KL in DANR [13]. Note that pilots adaptively 
transmitted during outage frames in our adaptive pilot 
transmission method do not incur SE penalty since data 
symbols are not transmitted in those frames.  

The power loss caused by transmitting pilots in adaptive 
pilot transmission also affects system performance. We 
select Es=Ep as in a pilot symbol assisted modulation 
(PSAM) system [15]. Although higher SE is achieved by 
optimally allocating power to data symbols and pilots as in 
[16], the SE loss of our method relative to the optimal 
allocation [16] is small due to the following reasons. First, 
the pilot symbols account for a small percentage of the 
available bandwidth. Therefore, reducing the power 
allocated to pilot symbols would not significantly improve 
the power allocated to the data symbols. Second, in 
DANR, the prediction accuracy mostly depends on the 
decision-directed data symbols [19]. Increasing the pilot 
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Fig. 3. Spectral efficiency of AM vs. NPMSE for 
target BER Pt=10−4. 
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power by sacrificing data symbol power would not 
significantly improve the prediction accuracy provided the 
pilot SNR is maintained high enough to demodulate the 
received data symbols reliably. In addition, in our method, 
the selected pilot energy does not depend on the accuracy 
of prediction and is known at the transmitter while in the 
variable pilot energy method it depends on the NPMSE 
and needs to be fed back [16]. Thus, our method reduces 
the required feedback relative to the technique in [16]. 

In the proposed adaptive pilot transmission, Mi-QAM 

symbols (Mi>0) occupy 
KL−1

KL ⌡⌠
γi

γi+1

p(γ̂)dγ̂  fraction of the 

bandwidth, and the pilots transmitted during outage frames 
that do not contain superframe pilots occur with 

probability 
K−1
KL ⌡⌠

0

γ1

p(γ̂)dγ̂ . Therefore, the power constraint 

for our DANR method is given by 

 Es= 
KL−1

KL Ed⌡⌠
γ1

∞

p(γ̂)dγ̂+ηEp+
Ep
KL(K−1)⌡⌠

0

γ1

 p(γ̂)dγ̂ (4) 

This power constraint is used in the optimization of 
thresholds for AM.  

As described in [13] for UAM, the initial channel 
estimates at the receiver are obtained by filtering the 
observed superframe pilots and one predicted future 
superframe pilot. These estimates are employed to 
demodulate the received data symbols coherently as 
follows. Suppose the initial channel estimate for the kth 
frame is denoted h0(k;L), and assume this frame is not an 
outage frame. In the ACM system, the soft input to the 
Viterbi decoder for symbol l (see (1)) is given by 
y(l)/h0(k;L), where l∈[kL−L+1,…, kL] are the indices of 
symbols in the kth frame. To reduce the BER of decisions 
used for the decision-directed NR, it is desirable to employ 
the decoded information bits. At time l0, we select the 
survival path with the smallest metric, and use the 
information bits corresponding to this path as the decisions 
[17]. These decisions are re-encoded to obtain x̂(l,l0), l≤l0, 
the decision of symbols x(l) at time l0. The decoder 
traceback length is short for very recently observed data 
symbols, and they have high error rate. However, a 
traceback length of 5U (where U is the constraint length of 
the encoder) is sufficient for the decoding [18], and for the 
four-state encoder used in our system, the corresponding 
traceback length is only 15 information bits. This interval 
is much shorter than the memory span of the observation 
interval used for prediction [8]. Thus, the impact of 
increased decoding error rate on the performance of our 
DANR method is small.  

The decisions x̂(l,l0)  are employed to improve the 
estimation of channel coefficient h(k;L) at the frame rate. 
The estimation method is the same as for the UAM system 
[13]. Due to decision-directed estimation, the noise 

variance in these estimates −h(k;L)  is reduced by 
approximately a factor of L relative to the initial estimates 

h0(k;L) [13]. The estimates −h(k;L)  are passed through a 
robust NR filter to reject out-of-band noise and decimated 

by a factor of J samples to obtain estimates ~h(n) with low 
sampling rate fp=fs/(LJ). In our simulations, this low rate is 
given by the superframe rate, i.e., J=K.  

The one-step prediction of channel coefficient is given 
by [8] 

 ĥ(n+1)= ∑
p=0

PPred−1

ω*
pred(p)~h(n−p), (5) 

where Ppred is the order of predictor, and ωpred(p) , 
p∈[0,…,Ppred−1], are the coefficients of the predictor. The 
memory span of the predictor is defined as the time or 
spatial interval spanned by the samples used to perform 

one prediction, i.e., ~h(n−p) , p∈[0,…,Ppred−1]. For this 
predictor, the memory span is PpredKL/fs seconds, or 
PpredKLfdmλ/fs = PpredKλ/100, where λ is the carrier 
wavelength [9]. The Burg method is employed to estimate 
the predictor coefficients ωpred(p)  using an observation 
window that contains B past noise-reduced samples, where 
B>>Ppred. Finally, longer prediction ranges are achieved by 
iteration of (5) using the multi-step method [8].  

IV. NUMERICAL RESULTS AND ANALYSIS 

The standard Jakes model with nine oscillators as well 
as our realistic physical model is employed in simulations 
[8, 9]. The geometry of physical model data set used for 
testing LRP enabled by DANR is illustrated in [13, Fig. 4]. 
It represents a typical flat fading urban mobile radio 
channel with rms delay spread σd=1 us and fdm=100 Hz. In 
all simulations, the symbol rate fs= 100 Ksps, the frame 
size L=10, and K=10 frames per superframe are selected. 
The sampling frequency of the predictor is fp=1 KHz=10fdm 
and the order Ppred=20. The observation window of Burg 
predictor contains 200 and 100 samples for the Jakes and 
our practical physical models, respectively.  

For comparison, we also simulated the performance of 
low-rate raw pilot and high-rate pilot methods with the 
pilot rates 10fdm and 100fdm, respectively [8, 11]. In the raw 
pilot method, Burg predictor is employed to predict future 
channel coefficients. The high-rate pilot method assumes 
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the knowledge of channel statistics, and is employed only 
for the Jakes model in our paper. In this method, NR is 
performed using four filters with smoothing lags {0, 2, 5, 
10} [11] and filter order 50. The outputs of these NR 
filters are down-sampled to a rate of fp=10fdm and then fed 
into the MMSE predictor. For fair comparison, the spatial 
memory span is given by 2λ for all prediction methods.  

Fig. 4 and 5 illustrate the NPMSE and SE of several 
prediction methods for the Jakes model when the 
prediction range is 0.2λ. Due to accurate decisions of 
recently received data symbols, the DANR-aided 
prediction for UAM is more reliable than for ACM. 
However, since NR reduces the NPMSE below 10−1 for 
SNR≥10dB, the ACM achieves SE coding gain at low to 
medium SNR (see Fig. 3). At high SNR, the SE of ACM is 
limited by smaller maximum number of information bits 
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per symbol relative to UAM [6], since both AM methods 
employ the same set of constellation sizes. Therefore, 
UAM outperforms ACM when 256-QAM is frequently 
used at high SNR. Although the high-rate pilot method 
provides good prediction accuracy, its SE is smaller than 
for the DANR technique due to the penalty of transmitting 
oversampled pilots, and it has even lower SE than the raw-
pilot method for high SNR. Similar conclusions were 
made in [13] for the UAM system enabled by the high-rate 
pilot method.  

For the Jakes model, the SE gain of ACM over UAM is 
illustrated in Fig. 6 for different SNR and prediction 
ranges. Both systems are enabled by DANR-aided LRP. 
The maximum coding gain, 0.6 bits/sample, is achieved at 
SNR=24dB and the shortest prediction range (0.02λ). As 
the additive noise level and/or prediction range increase, 
the SE gap reduces due to less accurate prediction for the 
ACM system. To achieve a positive gain, the prediction 
range has to be less than 0.35λ.  

In Fig. 7 and 8, the NPMSE and SE are shown versus 
prediction range for fixed SNR of 20 dB. Both the Jakes 
and physical models are employed in these simulations, 
and the SE gain of DANR over the raw pilot method 
approaches one bit/sample for each model. As discussed in 
[13], realistic physical model data sets are easier to predict 
than the Jakes model data at low to medium pilot SNR due 
to a small number and non-uniform distribution of 
reflectors, while the opposite conclusion holds for high 
pilot SNR where the non-stationarity of the physical model 
data causes performance degradation [9]. Thus, LRP-aided 
ACM has better performance for realistic physical model 
than for the Jakes model for the SNR=20dB investigated in 
Fig. 7 and 8. 

The performance of the following “MMSE bound” 
predictor is also shown in these figures for the Jakes 
model. Suppose channel statistics are known, and consider 
a minimum mean square error (MMSE) predictor that 
employs pilots transmitted at the data rate. Let the memory 
span of this predictor be the same as for DANR-aided 
LRP. Thus, the corresponding filter order of this MMSE 
predictor is PpredKL. Suppose this predictor enables an 
ACM scheme with parameters described in section II and 
bandwidth loss η = 1/KL. The resulting MMSE and SE of 
this MMSE predictor serve as lower and upper bounds on 
the achievable NPMSE and SE of our practical technique. 

From Fig. 7, we observe that for shorter prediction 
ranges (≤0.2λ), the NPMSEs of the DANR and MMSE 
methods for the Jakes model do not significantly exceed 
10−2. When the prediction range increases to 0.4λ, the 
NPMSE of the DANR method grows over 10−1, while it is 
below 10−1 for the MMSE bound. As illustrated in Figure 

3, the SE is insensitive to the NPMSE values in the former 
case, but drops sharply for the latter case. Thus, the 
difference in SEs between DANR and the MMSE bound is 
small for shorter prediction ranges, and peaks at 1.2 
bits/sample when the range is 0.4λ. The NPMSE 
degradation of the DANR-aided LRP relative to the 
MMSE bound predictor is due to several practical 
limitations, including decision errors, AR coefficient 
mismatch and robust NR filtering. Moreover, in the DANR 
method, decomposition of the prediction into three stages 
(decision-directed NR, robust filtering, and Burg predictor) 
results in simple but suboptimal solution relative to a 
single MMSE predictor with very large filter order. Note 
that a MMSE predictor that experiences outages at the 
same rate as in the LRP-aided AM system (i.e. utilizes 
adaptive pilot transmission where one pilot symbol is 
transmitted in each outage frame) has similar performance 
to our ideal MMSE predictor [19]. Thus, the impact of 
outages on the performance of DANR is small. This result 
is due to the utilization of adaptive pilot transmission that 
significantly improves performance of the DANR method 
[19].  

V. CONCLUSIONS 

The performance of coded and uncoded AM aided by 
long-range prediction is investigated. It is demonstrated 
that ACM is more sensitive to the prediction errors than 
UAM, and reliable prediction is required to achieve 
positive coding gain. The LRP aided by data-aided noise 
reduction (DANR) was proposed for ACM and shown to 
achieve much higher SE than previously investigated pilot-
based methods due to its superior prediction accuracy and 
low pilot rate. The set of SNR values and prediction ranges 
where positive coding gain is achieved by ACM enabled 
by DANR-aided LRP was determined, and it was 
demonstrated that AM aided by LRP has better 
performance with the realistic physical model than for the 
Jakes model in the practical SNR range.  
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